

INSTITUCIÓN EDUCATIVA LENINGRADO

Resol. No.2285 de mayo 02 de 2011 Jornada Diurna

Resol. No. 3212 de Julio 01 de 2011 Jornada Nocturna NIT 816.002.832-0 DANE 166001002886

Taller de recuperación de grado 10/ física /2025 Daniel García

Taller

Nota: el taller se debe presentar con todos los procedimientos de lo contrario no tendrá validez, el taller es requisito para presentar la evaluación final.

- 1. Entregar en hojas de block cuadriculadas (no se hace en el cuaderno de matemáticas)
- 2.Todos los ejercicios se deben copiar y entregar resueltos con sus respectivos procedimientos, de lo contrario no tendrán validez.
- 3. el taller completo es requisito para poder presentar el examen de nivelación
- 4. fecha de entrega del taller: noviembre 25
- 5. Fecha de evaluación: noviembre 25

Temas

- Notación científica
- Movimiento de proyectiles
- Leyes de Newton.
- > Movimiento circular uniforme
- 1- Explique que es notación científica y como es su escritura correcta
- 2- Convierta los siguientes números a notación científica:
 - a. 4500000000m b.56000000cm c. 3490000 Kg d. 4590000000 Hg e. 5600000 mA f. 0.00000000067 g. 0,0098m h. 0.0000000678 mA i. 0.0000000056 Kg j. 0.0000000067mm
- 3- 2. Unidades de masa: Kg Hg Dg g- dg cg- mg Unidades de longitud : Km Hm Dm m- dm cm- mm g: gramo m: metro sufijos: k: kilo H: hecto D: deca d: deci c: centi m: mili

Realice las siguientes conversiones:

a. 34,78 m a km b). 456, 78 cm a mm c). 800,4 Hm a dm d) 6800 dm- Dm e). 80000 Kg a g f.) 450,709 dg a Kg g.) 80,80 Hm a mg h) 8000g a Hg

4. Movimiento parabólico

a. ¿Qué es un movimiento parabólico y cuáles son sus ecuaciones?.

INSTITUCIÓN EDUCATIVA LENINGRADO

Resol. No.2285 de mayo 02 de 2011 Jornada Diurna

Resol. No. 3212 de Julio 01 de 2011 Jornada Nocturna NIT 816.002.832-0 DANE 166001002886

- b. Realice tres dibujos donde se evidencia un movimiento parabólico de la vida cotidiana
- c. un proyectil se lanza con una velocidad inicial de 48 m/s, y un ángulo de 48⁰, determine la posición:
- . a los 0.3 s, b. a los 1 sg. c. a los 1.4 sg
- d. Un cañón dispara un proyectil con una velocidad inicial de 190 m/s y un ángulo de inclinación 28°. Calcula:

La altura máxima que alcanza el proyectil.

- -El tiempo que dura el proyectil en el aire. -Alcance horizontal del proyectil.
- e. Un bateador golpea la pelota con un ángulo de 47° y le proporciona una velocidad de 23 m/s. ¿Cuánto tarda la pelota en llegar al suelo? ¿A qué distancia del bateador cae la pelota?
- f. Un jugador de tejo lanza el hierro con un ángulo de 28° y cae en un punto situado a 26m del lanzador 2.4 segundos después. ¿Qué velocidad inicial le proporcionó al tejo? ¿Qué altura máxima alcanzo el tejo?
- g. inventa dos ejercicios de movimiento de proyectiles, uno donde encuentre la altura máxima y otro donde encuentre el alcance máximo (solucionarlos)
- h. Un chico patea una pelota contra un arco con una velocidad inicial de 23 m/s y con un ángulo de 52° respecto del campo, el arco se encuentra a 13 m. Determinar:
 - a) ¿Qué tiempo transcurre desde que patea hasta que la pelota llega al arco?.
 - b) ¿Convierte el gol?, ¿por qué?.
 - c) ¿A qué distancia del arco picaría por primera vez?.

5. Leyes de Newton

- a. Explique que es la dinámica y la cinemática.
- b. Explica que es una fuerza, cuáles son sus características y cuáles son sus principales unidades.
- c. Explica las 4 fuerzas de la naturaleza: fuerza gravitacional, fuerza electromagnética, fuerzas nucleares fuertes y las fuerzas nucleares débiles.
- d. Explica la ley de inercia y dibuja dos ejemplos de su aplicación, explica le dibujo.
- e. Explica la ley de fuerza o dinámica, y dibuja dos ejemplos de su aplicación, explica el dibujo.
- f. Explica la ley de acción y reacción, y dibuja dos ejemplos de su aplicación, explica el dibujo.

ALCALDIA DE PEREIRA

INSTITUCIÓN EDUCATIVA LENINGRADO

Resol. No.2285 de mayo 02 de 2011 Jornada Diurna

Resol. No. 3212 de Julio 01 de 2011 Jornada Nocturna NIT 816.002.832-0 DANE 166001002886

g. Encuentre la aceleración del sistema uc: 0.02

h. Encuentre la aceleración del sistema fr: 2.3 N

i. Aceleración 7 m/s, encuentre el coeficiente de rozamiento

j. Encuentre la aceleración del sistema uc: 0.6

k. Encuentre la aceleración del sistema fr: 1.8 N

INSTITUCIÓN EDUCATIVA LENINGRADO

Resol. No.2285 de mayo 02 de 2011 Jornada Diurna

Resol. No. 3212 de Julio 01 de 2011 Jornada Nocturna NIT 816.002.832-0 DANE 166001002886

6. Movimiento circular uniforme

- **a.** Una rueda de bicicleta tiene un radio de 0.3 m y da 100 revoluciones por minuto (rpm). ¿Cuál es la velocidad lineal de un punto en el borde de la rueda?
- b. Un ciclista de 70 kg toma una curva con un radio de 12 m, si da 8 vueltas en 12 minutos ¿Cuál es la fuerza centrípeta que actúa sobre el ciclista? ¿Cuál es la velocidad lineal del ciclista? que actúa sobre el ciclista?
- c. En una montaña rusa, un vagón de 500 kg se mueve a 18 m/s en una curva con radio de 25 m. ¿Cuál es la fuerza centrípeta que experimenta el vagón en esa curva?
- **d.** Un corredor corre alrededor de una pista circular de 50 m de radio. Si da 20 vueltas por minuto, ¿cuál es su velocidad lineal? ¿cuál es su aceleración centrípeta?
- e. Un carrusel gira a 2 revoluciones por minuto, si su velocidad es de 8 m /s ,¿ cuál es el radio de carrusel ? , ¿Cuál es la aceleración centrípeta de un pasajero en el borde del carrusel?
- **f.** Un satélite en órbita circular tiene un radio de 12,000 km y realiza una órbita completa cada 90 minutos. ¿Cuál es la velocidad lineal y aceleración centrípeta del satélite?

"QUERER ES PODER" DANIEL GARCÍA